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Abstract

This paper addresses the development of a temperature-dependent constitutive model for relaxor fer-
roelectric materials. These compounds exhibit a diffuse transition region between the paraelectric and
ferroelectric phases due to the chemical heterogeneity of the materials. At low temperatures, the materials
exhibit significant dielectric hysteresis in the relation between the applied field £ and the macroscopic
polarization P, with the degree of hysteresis decreasing as the temperature increases to the freezing tem-
perature Ty. Above the freezing temperature, the relation is single-valued but nonlinear.

These phenomena are modeled by assuming that the material is comprised of an aggregate of microp-
olar regions having a range of Curie temperatures. Thermodynamic principles are employed to obtain a
micropolar model which predicts the saturation polarization and distribution of regions as a function of
temperature. A corresponding macroscopic model is then constructed to predict the dielectric behavior of
the material above the freezing temperature. Hysteresis below the freezing point is incorporated through
the quantification of energy required to bend and translate domain walls pinned at inclusions inherent to
the material. The resulting ODE model quantifies the constitutive nonlinearities and hysteresis exhibited
by the materials through a wide range of temperatures and input drive levels. The predictive capabil-
ities of the model are illustrated through a comparison with PMN and PMN-PT-BT data collected at
temperatures ranging from 133° K to 313° K.
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1 Introduction

Relaxor ferroelectric compounds are proving advantageous in a number of high performance applications
due to their capability for generating large strains with reduced hysteresis when employed at temperatures
within their diffuse transition region. For example, a lead magnesium composition Pb(Mg; /3, Nby/3)O3
(PMN-PT) has been demonstrated to produce at least a 6 dB increase in acoustic source levels over Pb(Zr,
Ti)O3 (PZT) when employed as drivers for underwater sonar transducers [12, 15]. The capability of PMN
for applications which require micropositioning is illustrated by its success in adaptive optic systems. When
employed in multi-layered arrays for deformable mirrors, PMN has increased mirror sensitivity from 0.3
nm/V to 12.0 nm/V relative to monolithic PZT [6, 9, 10].

The stoichiometries and electromechanical mechanisms which provide the materials with superior per-
formance capabilities also imbue them with a complex constitutive behavior which must be quantified to
achieve their potential in high performance system design. Throughout the temperature range, the mate-
rials exhibit nonlinear saturation effects and positive induced strains due to their electrostrictive nature.
Hence they must be biased through an applied field so that they operate in one quadrant of the field-strain
curve. The incorporation of the inherent nonlinearities provides the capability for designing tunable sensors
once the nonlinearity is characterized. Additionally, the materials exhibit temperature-dependent hystere-
sis below the freezing temperature with the degree of hysteresis increasing as temperatures decrease as
illustrated in Figure 1. Finally, the strains generated by the materials are dependent on both the operating
temperature and frequency.

The manner through which these properties are manifested in transducer design can be illustrated
through the consideration of a sonar projector. When driven at high fields and high frequency, PMN will
heat due to dielectric hysteresis. Since PMN’s hysteresis decreases with temperature, actuators reach an
equilibrium temperature when heat dissipation due to conduction, convection and radiation balances the
internal heat generated by the ceramic. The final equilibrium temperature depends on the configuration
of the actuator, its electric drive cycle, and its surrounding environment. Shankar and Hom [16] predicted
a 40° C rise for a flextensional sonar transducer submersed in water using a simple heat generation model
for PMN. These predictions agreed quantitatively with experimental measurements made on an actual
transducer.

To minimize the deleterious effects of self heating and to optimize the design capabilities of transducers
which utilize relaxor ferroelectrics, it is necessary to develop temperature-dependent constitutive relations
which quantify the nonlinear behavior and hysteresis throughout the operating range of the materials.
The initial models proposed by Hom and Shankar [11] quantified the electrostrictive strains and nonlinear
saturation behavior of the materials for isothermal conditions and transition temperatures where hysteresis
is negligible. Subsequent experiments by Brown et al. [2] demonstrated that the model accurately pre-
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Figure 1. Hysteresis and saturation polarization of PMN as a function of increasing temperature (from
Glazounov et al. [7]). Abscissas: electric field (MV/m), ordinates: polarization (C/m?).



dicts the coupled electromechanical behavior of the materials for isothermal, hysteresis-free (anhysteretic)
operating conditions. The hysteresis inherent to the materials at lower temperatures, where the material
exhibits a well-defined domain structure, was then modeled by Smith and Hom [19, 20] through the quan-
tification of losses due to domain wall motion. This provided a unified framework which quantified both
the nonlinear behavior and hysteresis exhibited by the materials at fixed temperatures and quasistatic
operating conditions. An initial model characterizing the temperature-dependence of PMN was developed
by Glazounov at al. [7] using as a basis the same polarization model employed by Hom and Shankar.
This model focused on the anhysteretic behavior of the materials and was based on the assumption that
the material consists of micropolar regions having a distribution of local Curie temperatures. The model
quantified the saturation polarization of the aggregate, the density of micropolar regions and the distribu-
tion of transition temperatures for PMN but did not account for interactions between polar regions. The
theory of Glazounov et al. was subsequently extended by Hom and Shankar [13] to provide a quasistatic,
temperature-dependent model for PMN which quantified the nonlinear behavior of the material but did
not accommodate the hysteresis present at temperatures below the freezing temperature.

In this paper, we extend the previous theory to provide a unified model which quantifies the tem-
perature-dependent constitutive nonlinearities and hysteresis exhibited by relaxor ferroelectrics from low
temperature, ferroelectric regimes through the diffuse transition region preceding their paraelectric state.
Like Glazounov et al., we assume that the relaxor material consists of superparaelectric, micropolar re-
gions with a diffuse spectrum of Curie temperatures. However, we use a simple Ising model with near
neighbor ion interaction to represent the thermodynamics of the individual micropolar regions. Based on
the “random-layer” model of spatial B-site ordering for relaxor ferroelectrics, we calculate the dispersion
of local Curie temperatures. The micropolar model predicts the saturation polarization and the density of
the polar regions as a function of temperature. A macroscopic model, which includes interaction between
the micropolar regions, is then constructed to predict the anhysteretic polarization behavior of the mate-
rials above the freezing temperature. The hysteresis inherent to the materials below this temperature is
incorporated through the extension of the domain theory in [20] to incorporate thermal dependence in the
energy required to translate domain walls. As demonstrated by comparisons to experimental PMN and
PMN-PT-BT data, the resulting model accurately quantifies the nonlinear and hysteretic behavior of the
materials through a broad temperature range.

The physical mechanisms which provide relaxor ferroelectric materials with their characteristic behavior
and a general form of the constitutive equations which quantify this paper are summarized in the remainder
of this section. In Section 2, the isothermal anhysteretic and hysteresis models are summarized to illustrate
the framework of the model. The fully temperature-dependent model is then developed in Section 3
and illustrated through fits to PMN and PMN-PT-BT data in Section 4. These examples demonstrate
the ability of the model to quantify both the hysteretic and anhysteretic behavior of the materials for
temperatures ranging from 133° K to 313° K.

1.1 Physical Mechanisms for Relaxor Behavior

Normal ferroelectric materials, including the piezoelectric compound PZT, exhibit a sharp ferroelectric
to paraelectric phase transition and are operated at temperatures well below this transition. In contrast,
relaxor ferroelectrics exhibit a diffuse phase transition over a broad temperature range [5, 7, 23]. Since
relaxors are typically employed at temperatures within this transition region, the material’s dielectric
behavior strongly depends on the temperature and frequency of the applied electric load as illustrated in
Figure 2. The transition temperature is often tailored to a specific application by mixing PMN with lead
titanate (PT) and additional minor dopants, such as barium titanate (BT) and strontium titanate (ST).

The temperature-dependence of relaxors is manifested in both the degree of hysteresis and the satu-
ration exhibited by the materials as depicted in Figure 1. To be applicable throughout the temperature
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Figure 2. Dielectric response of a PMN-PT-BT (10% PT, 3% BT) at frequencies ranging from 0.1 kHz
to 100 Hz.

range, models must accommodate both of these phenomena. Furthermore, Viehland et al. [25, 26] have
demonstrated that relaxors deviate from the Curie-Weiss law at temperatures above the temperature of
dielectric maximum, 7;,, and that they exhibit non-Debye relaxation cumulating in polarization freezing
at a temperature below T},.

To motivate the underlying mechanisms, it is necessary to consider aspects of the stoichiometry of
these materials. The PMN compounds have the ABO3 shown in Figure 3. The A sites are lead anions,
while the B sites are a mixture of low valence cations and high valence cations (1/3 Mg*2 and 2/3 Nb*®
in the case of PMN). The spatial ordering of the multiple B-site cations leads to the diffuse transition
of a relaxor. Smolensky postulated a dispersion of cations which creates Mg:Nb rich ferroelectric regions
surrounded by pure Nb sites [23]. Each region has a local phase transition, so the aggregate possesses
a spectrum of phase transitions. Cross [5] later proposed the more complete picture of relaxor behavior
depicted in Figure 4. He postulated that nanoscale size (3-5 nm) polar regions form with decreasing
temperature. These small regions have a low energy barrier so they fluctuate with thermal agitation in
a manner analogous to superparamagnetism. Each region’s dipole moment has random orientation so
that the macroscopic polarization is zero but the system’s RMS dipole moment is nonzero. Initially, the
relaxor obeys the Curie-Weiss relationship with a very high Curie temperature (398° K for PMN). With

O B’ (2/3Mg, U3 Nb)
e B” (Nb)
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Figure 3. Atomic structure of a perovskite relaxor ferroelectric A(B’,B”)O3. The B’ and B” sites indicate
the cation ordering for the “random layer” model.



\J

@%@*

Ferroelectric: The micropo-
lar clusters interact and ma-
terial exhibits remanent polar-
ization.

Increasing Temperature

i it
A

Superparaelectric: Microp-
olar regions develop but have
a random orientation due to
thermal excitation.

R
N
P e

Paraelectric: Micro-regions
are nonpolar and material ex-
hibits zero macroscopic polar-
ization.

Figure 4. Polar mechanisms in relaxor ferroelectric materials as postulated by Cross [5]. In the super-
paraelectric phase, the exhibits a nonzero RMS dipole moment but has zero macroscopic polarization.

further cooling, the thermal fluctuations decrease and interaction between regions freezes the polarization
in a manner similar to magnetic spin glasses. The material deviates from the Curie-Weiss relationship
and possesses a strong frequency dependence. Eventually, the material develops a permanent remanent
polarization and large domains develop as in a normal ferroelectric.

The ordering of the B-site cations plays a crucial role in defining the diffuse nature of the transition and
two cation ordering models have been proposed. Diffraction studies indicate that the polar regions have a
1-to-1 distribution of two different cation sites arranged in a face center lattice. These two sites are denoted
as B’ and B” as depicted in Figure 3. In the “space charge” model for PMN, it is assumed that ordered
regions consisting of Mg exclusively occupy the B’ sites while Nb exclusively occupies the B” sites [8, 26].
The ordered regions thus carry a net negative charge which should inhibit domain growth. In the “random
layer” model [1, 3], Mg and Nb in a 2-to-1 ratio randomly populate the B’ sites, while Nb exclusively
occupies the B” sites. In this model, the ordered regions are charge-balanced so domains should coarsen
during heat treatment. Recent experiments by Akbas and Davies [1] have shown that domain growth
does occur during annealing in Pb(Mg; /3 Tay/3)O3 (PMT), which supports the “random-layer” model of
the B-site cation distribution. It is this latter model which we employ in Section 3 when quantifying the
macroscopic behavior of the materials.

1.2 General Constitutive Relations

We summarize here the general form of the constitutive relations for relaxor ferroelectric materials. The
relation for the direct electrostrictive effect is posed in terms of a general function which is then specified in
subsequent sections. To simplify the discussion, we focus on the 1-D case. This provides models which are
adequate for a number of applications utilizing relaxors and provides a framework which can be extended
to multiaxial models if the application warrants.

To define an appropriate Gibbs function for relaxor materials, we assume that the material is linearly
elastic, is electromechanically coupled through electrostrictive effects, and that it exhibits a nonlinear
and potentially hysteretic relation between the input field E, the macroscopic polarization P, and the
operating temperature 7T'. For polycrystalline materials which are approximately isotropic, an appropriate

Gibbs function is 1
G= _WU — Q33P20' + go(P T)



where o denotes the axial stress, Y is the open circuit elastic modulus, ()33 is the longitudinal electrostrictive
coefficient and G is the stress-free Gibbs free energy. The use of the thermodynamic relations

oG oG
"% 0 "7 op

e =
then yields the general constitutive relations

1
= — P2
e YO' + @33 (1)

E = —2Q33P0+f(P,T)

specifying the strain e and field E as functions of the stress, polarization and temperature. The nonlinear
map F, which quantifies the stress-free dielectric response of the material, will be specified in subsequent
sections.

2 Isothermal Hysteresis Model

To motivate the strategy used to construct the temperature-dependent hysteresis model and constitutive
relations, we summarize first the model developed in [19, 20] for fixed temperature applications. The fixed
temperature model is constructed in two steps: (1) the characterization of the hysteresis-free (anhysteretic)
relation between the input field E and polarization P, and (2) the modeling of hysteresis losses through
the quantification of energy required to bend and translate domain walls pinned at inclusions in the
material. We note that while the anhysteretic model can be multivalued for certain parameter choices, the
transition between saturation values is typically steeper than that observed in polycrystalline materials
as temperatures approach the Curie point. The inclusion of domain wall loss mechanisms modulates the
transition and provides accurate predictions for the polarization at a range of fixed temperatures. An
important attribute of the model is the property that parameters can be asymptotically correlated to
physical properties of the data including the coercive field and remanence point, and pertinent asymptotic
relations from [21] are summarized at the end of the section to motivated components of the temperature-
dependent model developed in Section 3.

Anhysteretic Polarization

The anhysteretic polarization at a given field level E is defined to be the polarization that results
when a decaying AC field centered at E is applied to the material. For a fixed stress, it represents an
equilibrium between the thermal and electrostatic energies and can thus be modeled using Boltzmann
principles. Under the assumption that dipoles can orient only in the direction of the applied field, or
opposite to it, the balance of energy yields the Ising spin model

P,, = popN'tanh (Z;—?) (2)
where pg is the dipole moment of a single cell and N is the total number of moments per unit volume
(N = N/V). The thermal energy is quantified by kT where kp is Boltzmann’s constant and T is the
temperature.

To complete the model for the anhysteretic polarization, it is necessary to incorporate interactions due
to neighboring dipoles. These effects, which are analogous to the Weiss fields in magnetic materials, are
modeled under the assumption that the effective field at the domain level has the form

E.=E+aP+P,. (3)



The component aP incorporates the effects of interdomain coupling while P, quantifies the electrome-
chanical coupling due to applied stresses. Finally, to guarantee that the model saturates to the saturation
polarization Pk, it is necessary to define

Py = poN .

For regimes in which the electromechanical coupling is adequately modeled by the bilinear relation P, =
2Q33Po, the field can then be expressed as

kgNT
E = —2Q33Pc — oP + ~2——arctanh(P/P,). (4)
The function F in (1) is this given by
kgNT
F(P,T) = —aP + "2 arctanh(P/P,). (5)

S

For implementation purposes, it is advantageous to express the anhysteretic polarization as

E
P,, = P;tanh (f) (6)

where a = M, like o and Ps, is a macroscopic parameter which is estimated using either the asymptotic
Do

relations developed in [21] or through a least squares fit to data. We note that while a form of temperature-
dependence is incorporated in the parameter a, it does not provide a complete characterization of the
thermal behavior of relaxor ferroelectrics through their full operating range. The parameters a and P
also vary with temperature, and appropriate expressions quantifying the thermal dependence of all three
parameters are developed in Section 3.

For certain materials, the assumption that dipoles orient either with or against the field is too stringent
and produces models which saturate too quickly. The less restrictive assumption that dipoles can orient
uniformly yields the Langevin relation

P,, = P [coth (%) — (Eieﬂ (7

when the thermal and electrostatic energies are balanced through Boltzmann relations. The anhysteretic
model (7) can provide slightly improved accuracy when characterizing certain materials but it cannot be
inverted to yield polarization-based constitutive relations comparable to (4). Both the Ising spin expression
(6) and Langevin relation (7) have been employed when modeling the anhysteretic behavior of ferroelectric
and ferromagnetic materials.

Hysteresis Model

The second component of the model quantifies the energy required to translate and bend domain walls
pinned at inclusions in the material. As detailed in [19, 20], the irreversible changes in polarization due to
domain wall translation are incorporated through the quantification of the energy

P
Eyin(P) = k /O P
required to reorient dipole moments. The parameter k is defined by k = @ where n denotes the average
density of pinning sites, p is an average dipole moment, and (£;) is the average energy for 180° domain
walls. While k£ was considered constant in the fixed-temperature analysis of [19, 20, 21], it is clearly
temperature-dependent due to the dependence of (£;) on the thermal energy.



A balance of electrostatic energy then yields the relation
sz'rr _ g Pan - Pir'r
dE ké — a(Pyn — Pyy)

(8)

for the irreversible polarization. The parameter § = sign(F) ensure that the energy required to break
pinning sites always opposes changes in the polarization. The physical observation that polarization changes
after a reversal in field direction are reversible motivates the incorporation of the parameter § which is
defined to 1 if {dE < 0 and P > Pap} or {dE > 0 and P < P,,} and is 0 otherwise. The solution of (8)
quantifies the irreversible changes in polarization due to domain wall translations.

The second component of the polarization is the reversible polarization which models the effects of
domain wall bending. To a first approximation, this is modeled by the relation

Py = C(Pan - Pirr) (9)

where c is a parameter which is estimated for a given material [19, 20, 21].
The total polarization is given by
P =Py + Prey . (10)

To implement the model, the effective field for a given field and irreversible polarization level is computed
using (3). This effective field value is then employed in either (6) or (7) to compute the corresponding
anhysteretic polarization. The subsequent irreversible polarization is determined by numerically integrating
(8). The total polarization is then specified by (10).

To specify the functional F in the general constitutive relations (1), it is necessary for the field to
be expressed as a function of the polarization. This can be accomplished only through the solution of a
differential or integral equation since this is the form of the model used to quantify the evolving hysteresis.
The construction of a consolidated differential equation which facilitates inversion is detailed in [20] and
details regarding the solution of the inverted problem is described in [17, 18, 22] in the context of the
analogous magnetization model. Hence while one cannot provide an algebraic constitutive relation for the
polarization-based field for this hysteresis model, the map between P and E is well-defined as the solution
to an evolution equation. The determination of the inverse through the solution of a complementary
differential equation also facilitates the construction of inverse compensators for linear control design.

Asymptotic Parameter Relations

The previous model requires the parameters «,a,c, P; and k. Algorithms for determining initial es-
timates of these parameters using measured values of the remanence polarization, coercive field, peak
polarization and field, and the differential susceptibilities at these points were developed in [21]. We sum-
marize here those asymptotic relations which pertain to the development of the temperature-dependent
model.

Let xqn and x. respectively denote the differential susceptibilities of the anhysteretic polarization at
E =0 and the total polarization at F = E. as depicted in Figure 5. The slopes of the polarization curve
before and after tip reversal are denoted by x;\ and ;.. As developed in [21], estimates of the parameters
a,c and k are given by the asymptotic relations

P,
a= " (11a)
3Xan
Xm
c==r 11b
X (11b)
k =~ E. (For soft materials). (11c)
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Figure 5. Hysteresis curve with differential susceptibilities employed for parameter determination.

The saturation polarization P; can quite accurately be estimated directly from high drive level data while
the slope xqn is approximated by the slope at coercivity xq, = x.. Details concerning these relations as
well as the complete algorithm for estimating the full parameter set are provided in [21].

3 Temperature-Dependent Hysteresis Model

From a physical perspective, the parameters a, o, Ps, k and ¢ are temperature-dependent so the model (10)
is valid only in operating regimes in which temperatures exhibit minimal variation. In this section we
address the temperature-dependence through the consideration of the relaxor ferroelectric as an aggregate
of micropolar regions having differing densities of Mg cations and hence differing ferroelectric properties.
The development of the anhysteretic relations is motivated by Glazounov et al. [7] and follows the theory
developed by Hom and Shankar [13]. The temperature-dependence in the pinning losses is incorporated
through energy arguments analogous to those employed in the theory of dislocation plasticity [14]. The
combined model can be used to characterize hysteresis in relaxor ferroelectrics throughout a wide range of
temperatures encountered in operation.

3.1 Anhysteretic Polarization

As noted previously, relaxor ferroelectrics are assumed to consist of micropolar regions whose transition
temperatures and ferroelectric properties are determined by variations in the concentration of cations
(Mg?t and Nb®" in PMN) which comprise the material. The anhysteretic component of the model is
constructed in two steps. In the first, we consider the thermodynamics of the micropolar regions in order
to predict the saturation polarization and density of Mg cations as a function of temperature. Secondly, the
interaction between regimes is quantified to construct a macroscopic model which predicts the dielectric
properties and polarization of the material for temperatures below the freezing temperature.
For modeling purposes, we make the following assumptions which are depicted in Figure 6.

(i) Each region contains a total of Ny Mg cations.

(ii) The density of Mg cations X is uniform throughout each region but varies between regions. As a
result of Assumption (i), the volume V; is each region is inversely proportional to Xj.
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Figure 6. Relaxor ferroelectric consisting of an aggregate of micropolar regions which satisfy Assumptions
(i) and (ii). In this depiction, there are Ng = 4 regions and a total of N = Nr Ny Mg cations in the material.

(iii) The strength of interactions between regions is directly proportional to the density of nearest neigh-
bors.

(iv) Below its local transition temperature, each region acts as a single dipole and exhibits a remanent
polarization.

3.1.1 Thermodynamics of Micropolar Regions

We consider first the behavior of the micropolar regions which is determined by the density of Mg cations
which occupy B’ sites. Under the assumption that the regions consists of a lattice of cells as depicted in
Figure 3, the dipole moment p for the lattice is given by

No
P=Do Z Si
i=1

where pg is the dipole moment for a single cell and Ny denotes the number of Mg cations in the region.
For PMN, only cells containing a Mg cation possess an associated spin s; = +1 where the sign depends
upon the cell’s orientation. A correlation between cells is provided by the average

1 Mo

R=—
No i=1

or equivalently, R = ﬁpo'

As noted in Assumptions (i) and (ii), we assume that the regions all have the same number Ny of
Mg cations but differing densities and hence volumes. Within a region, we let Ny and N_ respectively
denote the number of positive and negative cells. By noting that Ny = N + N_, the cell numbers can be
expressed in terms of the correlation through the relations

Ny =21 +R)

N
M:%Mﬂy

(12)



The density X is defined as the number of neighboring B’ sites that contain a Mg cation. As indicated
by Figure 3, X can range from 1 to 12. Furthermore X is assumed to be uniform throughout the region
in accordance with Assumption (ii).

As will be detailed later, the microregions have a distribution of Curie temperatures due to the differing
cation densities in the regions. To determine these densities, we note that B’ sites have a ratio of 2/3 Mg
cations to 1/3 Nb ions. For a Mg populated B’ site, each of the 12 adjacent B’ sites has a 65.4% probability
of being populated by a Mg cation and 34.6% probability of being populated by Nb. The probability that
the site is surrounded by X Mg cations is computed by assuming a binomial distribution

12!
B(X) i (0.654)% (0.346)127X .

~ X!(12 - X)
To obtain a continuous distribution appropriate for subsequent integration, this was then fit with the
normal distribution 1
(X) = e (X-a)?/20 13
() = (13)
having a mean a = 7.85 and standard deviation b = 1.65. Finally, the distribution is normalized to the
interval [0, 1] through the introduction of the variables

X

_ a
12

¢ (=1 (14

to obtain
() = Le—144(C—5)2/2b2 ) (15)

bV2r
The distributions (13) and (15) will be employed in subsequent discussion to compute ferroelectric prop-
erties of the material which depend upon cation densities in the micropolar regions.

To compute the internal energy due to spin conversion, we consider first the energy required to convert
an individual spin given a density X of neighboring Mg cations. Letting ®; denote the energy required to
convert the spin at a single site when the system is completely ordered (R = +1), the energy required to
convert a positive spin to negative (and conversely) is given by

(16)

We point out that these energy expressions are derived under the assumption that dipoles interact only
with adjacent neighbors.
The change in the internal energy U due to spin conversion can then be expressed as

dU - q)_|__)_dN_ + Q__>+dN+ . (17)
By utilizing the energy relations (16) and noting from (12) that dN; = %dR = —dN_, the expression
(17) can be integrated to obtain the relation
_ DoNo¢

V="

(1-R>+Up,

where Uy denotes the energy for the completely ordered state, for the internal energy.

10



For stress free conditions, the total Gibbs free energy I' for the microregion is related to the internal
energy by
=0U-S8TV,

where S denotes the entropy and Vj is the volume of the microregion. From statistical mechanics, the
entropy per unit volume for the system can be expressed as

kpNo kpNy No kBNo
S Ve nw(R)] Ve n [( N, >] 7 n

M!]
N, IN_|

where w(R) denotes the number of possible spin combinations that yield the correlation R. The entropy
expression can be simplified to

KN, 1 1—
S=—53PM%— R+ R) - Rmu—Rﬂ
Vo
which yields the free energy
®oN, kpNoT 1+R
r:-ifﬁu—R%+~£§L{Rm(T§R>—mu—R%}+%+km%m@)

for the region. We note that the expression for I' incorporates the ordering of neighboring moments reflected
in the first term and the tendency for disorder due to thermal agitation as reflected in the second term.
The electric field Ej,. in the polar region is determined by
or (PR

NoEj,r = — =
PoiNoLioc OR 2

+ Tkparctanh(R) .

In the absence of a local field, the equation can be expressed as

T
R = arctanh(R) (18)
cur
where co
Tewr = WBO (19)

denotes the local Curie temperature for that region. To motivate the definition (19) and this terminology,
it is noted that (18) has a single solution for T > T,,, and three solutions comprised of two stable and one
unstable solution for temperatures T' < T,,. Hence a pitchfork bifurcation occurs at T' = T, which is
consistent with a second-order phase transition.

The expression (19) quantifies the Curie temperature for a single micropolar region. The macroscopic
Curie temperature for the material is specified as the average Curie temperature for the regions or the
Curie temperature of the mean,

= (P
Tewr = gk—;) . (20)
The behavior of each polar regions can then be expressed as
P (T
m%&wzl~{R+£ arctanh(R) (21)

2

cur

in the absence of interactions between regions.
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3.1.2 Macroscopic Relations

The previous discussion focuses on the thermodynamics within a micropolar region and does not address
interactions between regions. As detailed in [20], however, such interactions can significantly affect the ef-
fective field present within the material and we focus here on the development of commensurate constitutive
relations for the aggregate material which incorporates these effects.

The constitutive relation (4) quantifies the dependence of the field on the polarization for fixed temper-
atures. To incorporate thermal dependence, it is necessary to quantify the effects of temperature on the
number of dipoles N and the coupling coefficient . As depicted in Figure 6, N is taken to be N = NrNj
where Ni and Ny respectively denote the number of micropolar regions and the number of Mg cations in
each region. To quantify «, we employ Assumption (iii) from Section 3.1 and assume that the strength
of interactions is proportional to the number of neighbors N; within a distance d of a cluster. Under
stress-free anhysteretic conditions, we then propose the constitutive relation

_®Ny;Ng .. kgTNgNo ( P )
P tanh ( — 22
avpr T yp, e (5 (22)

for relaxor materials. Here V' denotes the volume of material while @ is a relative measure of the interaction
energy between polar regions. We note that the second term on the right side of (22) is proportional to
the function employed by Glazounov et al. [7] for non-interacting clusters.

Under the assumption that the clusters are uniformly distributed, the number within a distance d can
be expressed as

E =

47Td3 NR
Ny = 3y
With the definition
_ 2n®d3NR(Ty)
= 7 3kpV
for the freezing temperature, the temperature-dependent constitutive relation between the field and polar-
ization can then be expressed as

2n®d3Nyp | —Ng NoNg(Ty) T P
E(T) = P L rctanh (2] 9
() 2 N7 AT (PS) (23)

We now employ the theory developed in Section 3.1.1 for the thermodynamics of the micropolar regions
to express Ps; and Ny in terms of the operating temperature and parameters which must be estimated for
a specific material.

The saturation polarization occurs when the dipole moments in all the microregions are aligned with
the field. The degree of alignment for microregions is quantified by the correlation R(T, X) specified by
(21) while the magnitude is dependent upon the number n(X) of Mg cations having X nearest neighbors.
Recalling that pg denotes the dipole moment of a single cell, the saturation polarization can be expressed
as

RAT) = 4 [ IR X)l (X)X

Since N denotes the total number of Mg cations in the volume V, we can express n(X) = NII(X).
Normalization to the unit interval then yields the expression

P(T) = P, [ IR 21

The distribution IT is computed using (15) and the parameter P, = % is estimated either directly from

the data or through a least squares fit to the data. The correlation R is computed through iterative solution

12



of the relation

BB = R+ T arctanh(R) (25)

cur

where 8 = % denotes the average degree to which local fields turn the polarization and hence change
the correlation; see (21). We note that at low drive levels, this contribution is small and one can employ
B = 0. For high drive levels, however, P; is more accurately approximated by treating § as a parameter
to be estimated and solving (25) with Ejpe = Epaq-

The number of micropolar regions Npg, at a fixed temperature 7', is computed by determining those
regions with nonzero correlation R, or from (25), those regions in which 7' < T¢y,. Since the number of

regions with density X is given by n(X)/Ny = NII(X)/Ny, the total number of regions in the volume is

NR(T) N /1
= — 12I1(¢)dC . 26
The use of (24) and (26) in (23) yields the temperature-dependent constitutive relation
_ 3 2 72 3 2
o 21 dd ( N ) I (T) p 27 ®d° Ny ( N ) éfl(T) arctanh( P ) (27)
3 VN,) P2(T) 3 VN,/) Ty P(T) Py(T)
where .
n@ = [ 1o
CT/Teur
1
I, = ﬁ _1210(¢) d¢ (28)
CTf/Tcur
ol
P(1) = P, [ 12RO/ T de
For implementation purposes, we formulate (27) as
_I}(T) , I Ii(T) P
E=a= P+a— arctanh ( ) 29
Py Oy BT P,(T) 29

where & and a are parameters which are estimated for a given material through a least squares fit to data.
For the subsequent hysteresis model, the constitutive relation is formulated as

P
E = o(T)P + a(T)arctanh (m) (30)
with the temperature-dependent parameters
I (T)
o(T) = a=
P(T)
I, I(T)
a(T) =a—=
@) Ty P (T)
ol
PAT) = P, [ 121R(T.OI() de
where P, = # must be estimated for a given material. The resulting model for the anhysteretic polar-
ization is B P (T
Pan(T) = Ps (T)tanh + ac(l(’l)—') an( ) (31)
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3.2 Domain Wall Losses

The anhysteretic model (31) quantifies the polarization which would occur in the absence of domain wall
pinning. For certain parameter choices, this model produces a form of hysteresis similar to that observed in
a single crystal which undergoes domain switching. However, the transition from remanence to the coercive
point is steeper than that observed in most operating regimes. Furthermore, the parameters obtained at
temperatures rising to the material’s freezing point typically yields a single-valued anhysteretic curve
whereas hysteresis is still present in the E-P relation. These phenomena are attributed to energy losses
due to domain wall pinning.

As summarized in Section 2, the quantification of the irreversible and reversible polarizations, respec-
tively, requires the parameters k and c¢. We focus here on the quantification of the temperature-dependence
in k since it directly affects the decrease in coercivity observed as temperatures increase to the freezing
point. The parameter c is taken as constant since its variation with temperature appears to be secondary.
If further refinement is required, analysis of the type developed for k£ can be extended to include the
reversible effects quantified by c.

For fixed temperature, it is noted in Section 2 that through the definition k& = %‘2’), the parameter k
depends on the 180° domain wall energy (€;) required to move between potential wells. The temperature
dependence in k is attributed to the temperature-dependence of the potential wells and hence (£,). To
quantify the reduction in energy required to move between wells at increasing temperatures, we employ
the asymptotic relation & = E, noted in (11c) and focus initially on the temperature-dependence of the
coercive field E..

The influence of temperature on the coercive field behavior is predicted using energy arguments drawn
from the theory of dislocation plasticity [14] and is similar to the approach employed by Chen and Wang
[4]. In this theory, energy barriers AG due to local resistive fields E are considered as the mechanism which
inhibits domain wall movement and hence prohibits domain wall movement and hence provides potential
wells. Using energy arguments analogous to those for slip dislocations, the application of Boltzmann theory
yields the modified Arrhenius equation

dP Ag ~AG
- = — E— 2
di AP() ( A ) Mo €XP ( k,‘BT ) (3 )

for the polarization rate. Here pg, Ag, h and AP, respectively denote the frequency at which the domain
wall vibrates, the distance traveled by the wall, the distance between walls, and the local change in
polarization due to domain wall movement.

To specify the energy barrier AG, we consider the phenomenological model

1/p4Y
so-ai-(2)"]
E

which is analogous to that employed in the theory of dislocation plasticity [14]. The parameter Gy desig-
nates the total free energy required to overcome the obstacle. The parameters p and ¢ quantify the shape
of the obstacle as depicted in Figure 7. For the analysis which follows, the choice ¢ = 1 with general p
proves sufficiently general, and in this case

AG = Gy(E'/? — E'/P)

where Gy = Gy /El/p. We note that in their theory, Chen and Wang employed p = g = 1.
For fixed frequencies which are sufficiently low to permit quasistatic approximations, this yields

—Go (El/p _ El/p)
kT

dP dE

dEar P
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Figure 7. The influence of p and ¢ on the shape of short range obstacles which are sensitive to thermal
activation (after [14]).

where p; = APyAgpuo/h. With the definition py = =942 it follows that

p1 di’
kp dP ~
EY? =721 ( —> EVr,
&y n\p2op +
Consideration of the coercive field E = E. then yields
EYp — T’é_B In [poxe(T)] + E/7 (33)
0

where x.(T') denotes the differential susceptibility at E. (See Figure 5). The susceptibility will be temper-
ature-dependent since

Py(T)
(T) = xan(T) =
as indicated by the asymptotic relation (11b) of Section 2.2. The contribution In[pox.(T')] is dominated

by T', however, so to a first approximation, we can represent the temperature dependence of the coercive
field by _
B, = k(T - T)" (34)

where T is the freezing temperature where remanence disappears and kisa material-dependent parameter.
We note that for p = 1, the expression (34) yields a linear relation between the coercive field and operating
temperature which is consistent with the data plotted in Figure 2 of [4] for a variety of materials. At low
temperatures, however, one can observe a quadratic dependence as illustrated for PMN in Example 2 of
the next section.

Finally, from the asymptotic relation k = E. (see (11c)) for soft materials, we consider the relation

K(T) = k(T; — T) (35)

for the pinning constant at temperatures T < Ty where hysteresis is present. For temperatures T > TY,
the material exhibits no hysteresis so k(7') = 0 and the irreversible relation

dPirr
dD,

derived in [20] and used to obtain (8), reduces to the anhysteretic model (31).

Piyy(T) = Pan(T) — Seok(T)

(T), (36)
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3.3 Temperature-Dependent Hysteresis Model

The full hysteresis model is constructed in the manner summarized in Section 2 with the temperature-
dependent coefficients, developed in Sections 3.1 and 3.2, employed in the models for the anhysteretic,
irreversible and reversible polarizations. The parameters, along with the complete model are summarized
in Algorithm 1 below. Details regarding the implementation of this algorithm are provided in [20, 21].
Examples illustrating the performance of the model are provided in Section 4.

Algorithm 1:
(A) Determine Temperature-Dependent Parameters

(1) At a specified temperature, estimate &,a,k, 8, ¢,p and P; = poN/V using the asymptotic rela-
tions from [21] or a least squares fit to data. Note that for small drive level applications and
moderate temperature ranges, one can often employ f =0 and p = 1.

(2) Compute the temperature-dependent parameters

_ I s
of) = Gppas o PUT) =P, [ RIREOIIC) "
o(T) = a;—j 1131((?) . k() = k(T — T

where

nmy=[

CT/Tcur

1

B[ e
CTf/Tcu'r

(L a/12 , a =17.85,b=1.65

(T
BEmaz = —CR+ %arcta,nh(R)

(B) Temperature-Dependent Polarization

(1) Construct Anhysteretic Polarization

E+ o(T)By (T
P, (T) = P¢(T)tanh i(%) i (T)
(2) Irreversible Polarization
df)irr g Pan (T) — ])ir'r T)

(T) =4

dE %6 — & [Pan(T) — Py (T)]

(3) Reversible Polarization

Prev (T) = C[Pan (T) - PiTT (T)]
(4) Total Polarization

P(T) = Pyr(T) 4 Prep(T)
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4 Model Validation

The model derived in Section 3 quantifies the polarization in relaxor ferroelectric materials as a function
of both the input field £ and the temperature 7T'. To illustrate the performance of the model, we consider
both PMN and PMN-PT-BT data over a wide range of temperatures both above and below the freezing
temperatures. For each set of data, a single set of parameters was employed throughout the full temperature
range, and the temperature and electric field provided the sole inputs to the model. The results illustrate
that through the incorporation of associated physics, the model characterizes a wide range of dielectric
behavior.

Example 1 (PMN-PT-BT):

We consider first the capability of the model to characterize and predict the dielectric behavior of
PMN-PT-BT for input fields having a peak value of 1 MV /m at temperatures ranging from 7" = 263° K to
T = 313° K. At the lower temperature, the material exhibits ferroelectric behavior and significant hysteresis
as shown in Figure 8. As the temperature increases through the freezing temperature (approximately
288° K), the hysteresis vanishes and the material exhibits a single-valued superparaelectric relation between
the applied field and measured polarization. The data was collected from a stress-free sample (o = 0) and
the input field was cycled at 1 Hz to maintain quasi-static conditions.

The parameter values & = 1.5 x 107, = 7.65 x 107,k = 4.0 x 103, P, = 0.53,8 =7 x 1079, ¢ = .3
and p = 1 were obtained through a least squares fit to the data. The freezing temperature was specified

T=263° K T=283°K
=7 =
0.2 7 0.2t
/>
V
0.1 0.1} V4
7,
O /
-0.1
7
7
02 S
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
T=293° K T=313°K
0.2 0.2t
0.1 7 0.1f -
7
0 0
/ 7
-0.1 7 -0.1
-0.2 -0.2f
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 8. PMN-PT-BT data (— — -) and the domain wall model (——) for the temperature range
T = 263°K to T = 313°K. Abscissas: electric field (MV/m), ordinates: polarization (C/m?).
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to be Ty = 288° K and the Curie temperature was taken to be Teur = 313° K. We reiterate that the
temperature-dependence in the parameters «(T'),a(T), k(T) and Ps(T) is incorporated solely through the
relations (37) and the same parameter set was employed through the full range of temperatures and field
inputs.

The model fit obtained with these parameters is compared with the measured data in Figure 8. It
is observed that the model very accurately quantifies the initial hysteresis at 7' = 263° K, the decreased
hysteresis at T' = 283° K, and the anhysteretic behavior at higher temperatures. It also quantifies the
decrease in the maximum measured polarization which occurs as temperatures increase. We point out the
model parameters were chosen to optimize the model predictions throughout the full temperature range
and better fits can be obtained for specific temperature intervals if desired. For example, the parameter
choices @ = 1.4 x 107,a@ = 5.74 x 107,k = 5.0 x 103, P, = 0.53 and c = .5 yield a highly accurate model fit
to the hysteresis at 7" = 263° K but with less accuracy at the higher temperatures.

Example 2 (PMN):

To provide a second illustration of the model attributes over a more extensive temperature range, we
consider its capability for predicting the dielectric behavior of PMN data collected by Glazounov et al. [7].
The data set under consideration is plotted in Figure 9. For temperatures ranging from 7' = 133° K to
T = 313° K, the input fields were prescribed to have peak values of 3.52 MV /m and frequencies of 0.1 Hz
to minimize frequency effects. The data exhibits significant hysteresis in the low temperature ferroelectric
regimes with decreasing hysteresis and saturation values as the temperatures increase.

To illustrate the thermal dependence of the hysteresis loss parameter k(T') for this temperature range,
the coercive fields are plotted as a function of temperature in Figure 10. Additionally, the best least squares
linear and quadratic fits to the data are plotted to motivate the choice of p in the relation

k(T) = k(Ty = T),

where k(T') = E.(T'), derived in Section 3.2. It is observed that for temperatures above 213° K, the coercive
data exhibits a nearly linear dependence on temperature and one can employ p = 1 as in Example 1. For
the full temperature range, however, a linear model will significantly underestimate the coercive field at low
temperatures and a quadratic model is required for accurate predictions; hence for the model development,
we employed p = 2. Finally, the data in Figure 10 indicates that the critical freezing temperature for this
material lies between 233° K and 253° K, and we employed Ty = 242° K in the model.

The bulk Curie temperature was taken to be T, = 398° K. The remaining model parameters were
estimated through a least squares fit to the data. The model predictions obtained with the parameter
set @ = 1.8 x 108, = 2.5 x 108,k = 190, P, = 0.38,8 = 1.42 x 1078 and ¢ = 0.1 are compared to the
PMN data in Figure 9. It is observed that the model quantifies both the hysteretic dielectric behavior
in the ferroelectric regime and the decaying anhysteretic response above the freezing temperature. The
primary discrepancy between the data and model predictions lies in the elbow of the hysteresis curve
where the model predicts a more gradual transition from saturation to coercivity than is observed in the
data. It is hypothesized that this is due to domain rotation mechanisms which are not incorporated in the
anhysteretic model. We note that the model fits at any given temperature can be improved by optimizing
the parameters for that temperature. However, the specified parameter set provides a good fit throughout
the temperature range, with thermal dependence in «(7T'), a(T'), k(T') and P,(T) incorporated solely through
the expressions (37).
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Figure 9. PMN data (— — ) from Glazounov et al. [7] and domain wall model (——) for the temperature
range T = 133°K to T = 313°K. Abscissas: electric field (MV/m), ordinates: polarization (C/m?).
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Figure 10. Coercive PMN data from Glazounov et al. [7] plotted as a function of temperature and the
best least squares linear and quadratic fits to the data.

5 Concluding Remarks

This paper addresses the modeling of temperature-dependent constitutive nonlinearities and hysteresis in
relaxor ferroelectric materials. As in the fixed-temperature case, the model is constructed in two steps:
(i) the modeling of the anhysteretic dielectric behavior through Boltzmann and thermodynamic principles,
and (ii) the modeling of hysteresis through the quantification of energy required to bend and translated
domain walls pinned at inclusions inherent to the materials. The microscopic anhysteretic model is based
on the assumption that the materials are comprised of micropolar regions having a broad spectrum of
Curie temperature due to their chemical heterogeneity. Consideration of the free energy in the presence
of variations in cation distributions yields an Ising spin model representing the thermodynamics of the
microregions. Based on a “random layer” model for B-site orientations, this then provided a mechanism for
computing the saturation polarization and distribution of micropolar regions as a function of temperature.
A nonlinear model characterizing the aggregate material behavior, in the absence of hysteresis, was then
obtained by combining the micropolar model with macroscopic constitutive relations. To quantify the
hysteresis inherent to the materials at low temperatures, the energy required to reorient dipoles, and
hence move domain walls, was quantified as a function of temperature. The resulting combined model
characterizes the hysteresis and constitutive nonlinearities exhibited by the materials from low temperature
ferroelectric regimes through the superparaelectric phase where the materials exhibit saturation effects but
negligible hysteresis.

The predictive capabilities of the model were illustrated through comparison with PMN and PMN-PT-
BT data collected under quasistatic conditions. For both data sets, the model quantifies the hysteresis
observed at low temperatures as well as the decrease in hysteresis which occurs as temperatures increase.
It also quantifies the transition to anhysteretic behavior and the reduction in saturation polarization which
occurs as temperatures increase. The full temperature and field dependence is incorporated in the model
and the differing model responses were obtained with one set of parameters. The sole inputs to the model
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are the input field and the operating temperature. The small number of parameters (7) and their asymptotic
relation to measurable quantifies (e.g., coercive field E., slope at field reversal) facilitates the construction
of the model as well as the updating of parameters to accommodate changing operating conditions.

Due to the focus of the paper on the quantification of the thermal dependence on the dielectric prop-
erties of relaxor materials, the examples were chosen to have fixed maximum field inputs and variable
temperatures. The capability of the model to accommodate variable field inputs is documented for various
PZT compounds in [21] through a comprehensive set of examples.

We note that the model developed here is quasistatic in nature and hence does not yet incorporate
the physical mechanisms which produce certain frequency effects in relaxor materials. Care should thus
be exhibited if the model is employed in variable or high frequency regimes. While certain choices for
parameters may produce accurate model fits at fixed high frequencies, this should be attributed to the
mathematical flexibility of the model rather than incorporated physics. The development of a commensu-
rate physics-based dynamical model is under current investigation.

Finally, the ODE nature of the model makes it amenable to inversion through the consideration of a
complementary ODE in a manner analogous to that described in [17]. This facilitates the construction
of an inverse compensator which can be used for linear control design [24, 27]. The application of these
techniques for linear control implementation for piezoceramic actuators which exhibit hysteresis is also
under investigation.
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